MLflow Deployment on Various Clouds: A Quick Overview

Uncategorized

Great question! Deploying MLflow on various cloud platforms enables centralized tracking, model registry, and production-ready serving. Below is a complete guide on how to deploy MLflow on major cloud providers with options for both minimal and production-grade setups.


🌐 MLflow Deployment on Various Clouds: A Quick Overview

Cloud ProviderDeployment OptionsNotes
AWSEC2, S3, RDS, EKS, SageMakerFull MLOps lifecycle possible
AzureAzure ML, AKS, Blob Storage, PostgreSQLAzure ML integrates natively
GCPCompute Engine, GKE, Cloud Storage, Vertex AIVertex AI can integrate with MLflow
Any CloudDocker + Cloud VM or KubernetesMost flexible, cloud-agnostic

🔧 1. MLflow on AWS

Option A: Minimal Setup (Quick Start)

  1. ✅ Launch an EC2 instance
  2. ✅ SSH into the instance
  3. ✅ Install MLflow:
pip install mlflow
  1. ✅ Run MLflow Tracking Server:
mlflow server \
  --backend-store-uri sqlite:///mlflow.db \
  --default-artifact-root s3://your-bucket/mlflow/ \
  --host 0.0.0.0 --port 5000
  1. ✅ Open port 5000 on EC2 security group.

Option B: Production Setup

  • Backend DB: Amazon RDS (PostgreSQL or MySQL)
  • Artifact Store: Amazon S3
  • Authentication: Use AWS Cognito, reverse proxy + Oauth
  • Serving: Deploy MLflow models via SageMaker, ECS, or FastAPI + Docker
  • Monitoring: CloudWatch for logs + Prometheus for custom metrics

â˜ī¸ 2. MLflow on Azure

Option A: Azure Virtual Machine + Storage

  1. Create an Azure VM
  2. Use Azure Blob Storage as artifact store
  3. Use Azure PostgreSQL/MySQL as backend
  4. Run MLflow tracking server
mlflow server \
  --backend-store-uri postgresql://<user>:<pass>@<host>/mlflow \
  --default-artifact-root wasbs://<container>@<account>.blob.core.windows.net/mlflow/ \
  --host 0.0.0.0

Option B: Azure ML Studio Integration

  • MLflow is natively supported in Azure ML.
  • You can log experiments, models, and metrics directly via:
import mlflow
mlflow.start_run()

đŸŒŠī¸ 3. MLflow on GCP

Option A: Compute Engine

  • Create a Compute VM
  • Use Google Cloud Storage (GCS) for artifacts
  • Use Cloud SQL (PostgreSQL) for backend
  • Install MLflow and run it similarly to other clouds
mlflow server \
  --backend-store-uri postgresql://user:pass@host/mlflow \
  --default-artifact-root gs://your-bucket/mlflow/ \
  --host 0.0.0.0

Option B: Kubernetes (GKE)

  • Deploy MLflow on GKE cluster using Helm chart or custom YAMLs
  • Use GCS + CloudSQL
  • Use Ingress with HTTPS and Oauth for security

đŸŗ 4. Cloud-Agnostic Setup (Using Docker)

You can deploy MLflow anywhere (DigitalOcean, Oracle Cloud, etc.) using Docker:

docker run -it -p 5000:5000 \
  -v $(pwd)/mlruns:/mlflow/mlruns \
  -e MLFLOW_TRACKING_URI=http://localhost:5000 \
  mlflow/mlflow:latest server \
  --backend-store-uri sqlite:///mlflow.db \
  --default-artifact-root ./mlruns \
  --host 0.0.0.0

You can also create a Docker Compose file for MLflow + PostgreSQL + Nginx + SSL setup.


đŸŽ¯ Best Practices

TaskRecommendation
Backend DBUse PostgreSQL or MySQL (not SQLite in prod)
Artifact StoreUse S3, GCS, or Azure Blob
AuthenticationUse NGINX + OAuth or API Gateway
Deployment MethodUse Docker or Kubernetes for scaling
CI/CD IntegrationUse GitHub Actions, Jenkins, or GitLab CI to auto log runs

Would you like me to generate:

  • A Docker Compose setup
  • A Helm chart
  • A Terraform script to deploy MLflow on AWS or Azure?

Leave a Reply

Your email address will not be published. Required fields are marked *