Great question! Deploying MLflow on various cloud platforms enables centralized tracking, model registry, and production-ready serving. Below is a complete guide on how to deploy MLflow on major cloud providers with options for both minimal and production-grade setups.
đ MLflow Deployment on Various Clouds: A Quick Overview
Cloud Provider | Deployment Options | Notes |
---|---|---|
AWS | EC2, S3, RDS, EKS, SageMaker | Full MLOps lifecycle possible |
Azure | Azure ML, AKS, Blob Storage, PostgreSQL | Azure ML integrates natively |
GCP | Compute Engine, GKE, Cloud Storage, Vertex AI | Vertex AI can integrate with MLflow |
Any Cloud | Docker + Cloud VM or Kubernetes | Most flexible, cloud-agnostic |
đ§ 1. MLflow on AWS
Option A: Minimal Setup (Quick Start)
- â Launch an EC2 instance
- â SSH into the instance
- â Install MLflow:
pip install mlflow
- â Run MLflow Tracking Server:
mlflow server \
--backend-store-uri sqlite:///mlflow.db \
--default-artifact-root s3://your-bucket/mlflow/ \
--host 0.0.0.0 --port 5000
- â Open port 5000 on EC2 security group.
Option B: Production Setup
- Backend DB: Amazon RDS (PostgreSQL or MySQL)
- Artifact Store: Amazon S3
- Authentication: Use AWS Cognito, reverse proxy + Oauth
- Serving: Deploy MLflow models via SageMaker, ECS, or FastAPI + Docker
- Monitoring: CloudWatch for logs + Prometheus for custom metrics
âī¸ 2. MLflow on Azure
Option A: Azure Virtual Machine + Storage
- Create an Azure VM
- Use Azure Blob Storage as artifact store
- Use Azure PostgreSQL/MySQL as backend
- Run MLflow tracking server
mlflow server \
--backend-store-uri postgresql://<user>:<pass>@<host>/mlflow \
--default-artifact-root wasbs://<container>@<account>.blob.core.windows.net/mlflow/ \
--host 0.0.0.0
Option B: Azure ML Studio Integration
- MLflow is natively supported in Azure ML.
- You can log experiments, models, and metrics directly via:
import mlflow
mlflow.start_run()
đŠī¸ 3. MLflow on GCP
Option A: Compute Engine
- Create a Compute VM
- Use Google Cloud Storage (GCS) for artifacts
- Use Cloud SQL (PostgreSQL) for backend
- Install MLflow and run it similarly to other clouds
mlflow server \
--backend-store-uri postgresql://user:pass@host/mlflow \
--default-artifact-root gs://your-bucket/mlflow/ \
--host 0.0.0.0
Option B: Kubernetes (GKE)
- Deploy MLflow on GKE cluster using Helm chart or custom YAMLs
- Use GCS + CloudSQL
- Use Ingress with HTTPS and Oauth for security
đŗ 4. Cloud-Agnostic Setup (Using Docker)
You can deploy MLflow anywhere (DigitalOcean, Oracle Cloud, etc.) using Docker:
docker run -it -p 5000:5000 \
-v $(pwd)/mlruns:/mlflow/mlruns \
-e MLFLOW_TRACKING_URI=http://localhost:5000 \
mlflow/mlflow:latest server \
--backend-store-uri sqlite:///mlflow.db \
--default-artifact-root ./mlruns \
--host 0.0.0.0
You can also create a Docker Compose file for MLflow + PostgreSQL + Nginx + SSL setup.
đ¯ Best Practices
Task | Recommendation |
---|---|
Backend DB | Use PostgreSQL or MySQL (not SQLite in prod) |
Artifact Store | Use S3, GCS, or Azure Blob |
Authentication | Use NGINX + OAuth or API Gateway |
Deployment Method | Use Docker or Kubernetes for scaling |
CI/CD Integration | Use GitHub Actions, Jenkins, or GitLab CI to auto log runs |
Would you like me to generate:
- A Docker Compose setup
- A Helm chart
- A Terraform script to deploy MLflow on AWS or Azure?